Ecology


Ecology is the scientific study of interactions among organisms and their environment, such as the interactions organisms have with each other and with their abiotic environment. Topics of interest to ecologists include the diversity, distribution, amount (biomass), number (population) of organisms, as well as competition between them within and among ecosystems. Ecosystems are composed of dynamically interacting parts including organisms, the communities they make up, and the non-living components of their environment. Ecosystem processes, such asprimary productionpedogenesisnutrient cycling, and various niche construction activities, regulate the flux of energy and matter through an environment. These processes are sustained by organisms with specific life history traits, and the variety of organisms is called biodiversity. Biodiversity, which refers to the varieties of speciesgenes, and ecosystems, enhances certain ecosystem services.
Ecology is an interdisciplinary field that includes biology and Earth science. The word "ecology" ("Ökologie") was coined in 1866 by the German scientist Ernst Haeckel (1834–1919). Ancient Greek philosophers such as Hippocrates and Aristotle laid the foundations of ecology in their studies on natural history. Modern ecology transformed into a more rigorous science in the late 19th century. Evolutionary concepts on adaptation and natural selection became cornerstones of modern ecological theory. Ecology is not synonymous with environment, environmentalism, natural history, or environmental science. It is closely related toevolutionary biologygenetics, and ethology. An understanding of how biodiversity affects ecological function is an important focus area in ecological studies. Ecologists seek to explain:
·         Life processes, interactions and adaptations
·         The movement of materials and energy through living communities
·         The successional development of ecosystems, and

·         The abundance and distribution of organisms and biodiversity in the context of the environment.

Ecology is a human science as well. There are many practical applications of ecology in conservation biology, wetland management, natural resource management (agroecology, agriculture, forestry, agroforestry,fisheries), city planning,community health, economics, basic and applied science, and human social interaction. Organisms and resources compose ecosystems which, in turn, maintain biophysical feedback mechanisms that moderate processes acting on living and nonliving components of the planet. Ecosystems sustain life-supporting functions and produce natural capital like biomass production (food, fuel, fiber and medicine), the regulation of climate, global biogeochemical cycles, water filtration, soil formation, erosion control, flood protection and many other natural features of scientific, historical, economic, or intrinsic value.
__________________________________________________

Biom

Biomes are larger units of organization that categorize regions of the Earth's ecosystems, mainly according to the structure and composition of vegetation.There are different methods to define the continental boundaries of biomes dominated by different functional types of vegetative communities that are limited in distribution by climate, precipitation, weather and other environmental variables. Biomes include tropical rainforest, temperate broadleaf and mixed forest, temperate deciduous forest, taiga, tundra, hot desert, and polar desert. Other researchers have recently categorized other biomes, such as the human and oceanic microbiomes. To a microbe, the human body is a habitat and a landscape. Microbiomes were discovered largely through advances in molecular genetics, which have revealed a hidden richness of microbial diversity on the planet. The oceanic microbiome plays a significant role in the ecological biogeochemistry of the planet's oceans.

__________________________________________________

Biosphere

The largest scale of ecological organization is the biosphere: the total sum of ecosystems on the planet. Ecological relationships regulate the flux of energy, nutrients, and climate all the way up to the planetary scale. For example, the dynamic history of the planetary atmosphere's CO2 and O2 composition has been affected by the biogenic flux of gases coming from respiration and photosynthesis, with levels fluctuating over time in relation to the ecology and evolution of plants and animals. Ecological theory has also been used to explain self-emergent regulatory phenomena at the planetary scale: for example, the Gaia hypothesis is an example of holism applied in ecological theory.The Gaia hypothesis states that there is an emergent feedback loop generated by the metabolism of living organisms that maintains the core temperature of the Earth and atmospheric conditions within a narrow self-regulating range of tolerance.



No comments:

Post a Comment